Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update.

نویسندگان

  • S Ramaswamy
  • J M Musser
چکیده

Knowledge of the molecular genetic basis of resistance to antituberculous agents has advanced rapidly since we reviewed this topic 3 years ago. Virtually all isolates resistant to rifampin and related rifamycins have a mutation that alters the sequence of a 27-amino-acid region of the beta subunit of ribonucleic acid (RNA) polymerase. Resistance to isoniazid (INH) is more complex. Many resistant organisms have mutations in the katG gene encoding catalase-peroxidase that result in altered enzyme structure. These structural changes apparently result in decreased conversion of INH to a biologically active form. Some INH-resistant organisms also have mutations in the inhA locus or a recently characterized gene (kasA) encoding a beta-ketoacyl-acyl carrier protein synthase. Streptomycin resistance is due mainly to mutations in the 16S rRNA gene or the rpsL gene encoding ribosomal protein S12. Resistance to pyrazinamide in the great majority of organisms is caused by mutations in the gene (pncA) encoding pyrazinamidase that result in diminished enzyme activity. Ethambutol resistance in approximately 60% of organisms is due to amino acid replacements at position 306 of an arabinosyltransferase encoded by the embB gene. Amino acid changes in the A subunit of deoxyribonucleic acid gyrase cause fluoroquinolone resistance in most organisms. Kanamycin resistance is due to nucleotide substitutions in the rrs gene encoding 16S rRNA. Multidrug resistant strains arise by sequential accumulation of resistance mutations for individual drugs. Limited evidence exists indicating that some drug resistant strains with mutations that severely alter catalase-peroxidase activity are less virulent in animal models. A diverse array of strategies is available to assist in rapid detection of drug resistance-associated gene mutations. Although remarkable advances have been made, much remains to be learned about the molecular genetic basis of drug resistance in Mycobacterium tuberculosis. It is reasonable to believe that development of new therapeutics based on knowledge obtained from the study of the molecular mechanisms of resistance will occur.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Construction of a Cloning Vector Containing the hspX Gene of Mycobacterium tuberculosis

Background: Tuberculosis (TB) is a major cause of death worldwide. Finding an effective vaccine against TB is the best way to control it. Several vaccines against this disease have been developed but none are completely protective. The aim of this study was to design and construct a cloning vector containing the Mycobacterium tuberculosis (M. tuberculosis) heat shock protein X (hspX). Metho...

متن کامل

Evaluation of Gene Mutations Involved in Drug Resistance in Mycobacterium Tuberculosis Strains Derived from Tuberculosis Patients in Mazandaran, Iran, 2013

Drug resistance (especially multiple drug resistance) in Mycobacterium tuberculosis makes global concerns in treatment and control of tuberculosis. Rapid diagnosis of drug resistant strains of the bacteria has vital importance in the prognosis of the disease. The aim of this study was to identify the mutations responsible for drug resistance in Mycobacterium tuberculosis strains derived from pa...

متن کامل

Designing and construction of a DNA vaccine encoding tb10.4 gene of Mycobacterium tuberculosis

Background: Tuberculosis (TB) remains as a major cause of death around the world. Construction of a new vaccine against tuberculosis is an effective way to control it. Several vaccines against this disease have been developed. The aim of the present study was to cloning of tb10.4 gene in pcDNA3.1+ plasmid and evaluation of its expression in eukaryotic cells. ...

متن کامل

Construction of a Novel DNA Vaccine Candidate Encoding an HspX-PPE44-EsxV Fusion Antigen of Mycobacterium tuberculosis

Background: Mycobacterium tuberculosis is the causative agent of tuberculosis (TB). Bacille Calmette-Guerin (BCG) vaccine, is not effective in adults, therefore, many efforts have been made to produce an effective adult TB vaccine. The aim of this study was to develop a new tuberculosis DNA vaccine candidate encoding a recombinant HspX-PPE44-EsxV fusion antigen of M. tuberculosis. Methods: ...

متن کامل

Designing and Construction of a Cloning Vector Encoding mtb32C and mpt51 Fragments of Mycobacterium Tuberculosis as a DNA Vaccine Candidate

Background & objective:  Tuberculosis (TB) remains a major cause of death around the world. Bacillus Calmette Guérin (BCG) is the only vaccine used in TB prevention that has a protective effect in children, but its effectiveness declines in adults. Design and development of new vaccines is the most effective way against TB. The aim of this study was to design and construc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease

دوره 79 1  شماره 

صفحات  -

تاریخ انتشار 1998